نوشته های خاکستری

๑۩۞۩๑ جدیدترینها فقط در این سایت ๑۩۞۩๑

نوشته های خاکستری

๑۩۞۩๑ جدیدترینها فقط در این سایت ๑۩۞۩๑

انتگرال نامعین

انتگرال نامعین

تعریف : هرگاه معادله دیفرانسیلی تابعی معلوم باشد و بخواهیم معادله اصلی تابع را معلوم کنیم این عمل را انتگرال نامعین نامیده و آن را با نماد نمایش می دهند.

بنا به تعریف نماد را انتگرال نامعین نامیده وحاصل آن را تابعی مانندF(x) + c در نظر میگیریم هر گاه داشته باشیم: با شرط: (F(x) + c)' = f(x)

انتگرال معین

بنا به تعریف نماد را انتگرال معین نامیده و حاصل آن را عددی به صورت زیر تعریف میکنیم: a<X

aوb را به ترتیب کرانهای بالا و پایین انتگرال مینامیم.

تابع انتگرال‌پذیر

اگر تابعی دارای انتگرال باشد به آن انتگرال‌پذیر گویند.

تعبیر هندسی انتگرال

از نظر هندسی انتگرال برابر است با مساحت سطح محصور زیر نمودار.


نکته! انتگرال نمودار سه بعدی(انتگرال سه گانه)معرف حجم محصور زیر نمودار است. 

انتگرال یک تابع مساحت زیر نمودار آن تابع است.

انتگرال گیری

انتگرال گیری به معنی محاسبه سطح زیر نمودار با استفاده از روشها وقوانین انتگرال گیری است.

1.f تابعی در بازه (a,b) در نظر می‌‌گیریم. 2.پاد مشتق f را پیدا می‌‌کنیم که تابعی است مانند f که و داریم: 3.قضیه اساسی حساب دیفرانسیل و انتگرال را در نظر می‌‌گیریم:

 

بنابراین مقدار انتگرال ما برابر خواهد بود.

به این نکته توجه کنید که انتگرال واقعاً پاد مشتق نیست (یک عدد است) اما قضیه اساسی به ما اجازه می‌‌دهد تا از پاد مشتق برای محاسبه مقدار انتگرال استفاده کنیم. معمولاً پیدا کردن پاد مشتق تابع f کار ساده‌ای نیست و نیاز به استفاده از تکنیکهای انتگرالگیری دارد این تکنیکها عبارت‌اند از :

  • انتگرال گیری به‌وسیله تغییر متغیر      
  • انتگرال گیری جزء به جزء :
  • انتگرال گیری با تغییر متغیر مثلثاتی
  • انتگرال گیری به‌وسیله تجزیه کسرها

روش هایی دیگر نیز وجود دارد که برای محاسبه انتگرالهای معین به کار می‌‌رود همچنین می‌‌توان بعضی از انتگرال ها با ترفند هایی حل کرد برای مثال می‌‌توانید به انتگرال گاوسی مراجعه کنید.

محاسبه سطح زیر نمودار به‌وسیله مستطیل هایی زیر نمودار. هر چه قدرعرض مستطیل ها کوچک می‌شوندمقدار دقیق تری از مقدار انتگرال بدست میآید.


انتگرال هایی معین ممکن است با استفاده از روش های انتگرال گیری عددی ،تخمین زده شوند.یکی از عمومی‌ترین روش ها ،روش مستطیلی نامیده می‌‌شود در این روش ناحیه زیر نمودار تابع به یک سری مستطیل تبدیل شده و جمع مساحت آنها نشان دهنده مقدار تقریبی انتگرال است. از دیگر روش هایی معروف برای تخمین مقدار انتگرال روش سیمپسون و روش ذوزنقه‌ای است. اگر چه روش های عددی مقدار دقیق انتگرال را به ما نمی‌دهند ولی در بعضی از مواقع که انتگرال تابعی قابل حل نیست یا حل آن مشکل است کمک زیادی به ما می‌‌کند.

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد